Anel de fixação MMP - Principais Características

Os anéis de fixação **MMP** oferecem as vantagens de um sistema de ajuste forçado, com uma simplificada instalação e remoção. Estão baseados no sistema de cunha: onde a força primária dos parafusos obtida durante o processo de aperto, é transferida como uma elevada força radial que trava os componentes por atrito.

As principais vantagens dos anéis de fixação **MMP** são:

- As tolerâncias do eixo, cubo e anel permitem uma fácil montagem e um posicionamento preciso;
- A alta precisão de fabricação resulta em um acoplamento com bom balanceamento, o que permite a sua aplicação em altas rotações;
- Altas pressões de contato, conferem a transmissão de elevados torques transmissíveis com grandes momentos de flexão. Nesta condição, a área de contato entre eixo, anel e cubo, ficam praticamente isentas de corrosão;
- -A ausência de entalhes confere maior resistência estática e dinâmica, com projetos mais leves a um custo inferior em relação aos tradicionais métodos de fixação;
- A grande variedade de anéis, combinada com o fornecimento de peças especiais, ampliam as possibilidades de obtermos a solução adequada para a maioria das fixações eixo-cubo.

Seleção:

Os anéis **MMP** permitem uma fixação sem chaveta, com zero folga entre eixo e cubo, como por exemplo: engrenagens, polias, cames, alavancas, rotores e outros componetes.

Estes anéis são adequados para transmitir torque, esforços axias, momentos fletores e cargas radiais, separadamente ou simultaneamente. Os dados tabelados neste catálogo foram calculados sem fator de segurança. O usuário deverá adotar o fator de segurança específico ao seu projeto, que depende de cada aplicação.

Os critérios a seguir são utilizados para a correta seleção do anel. A seleção deverá ser baseada também em outros requisitos específicos, como: restrições dimensionais, precisão de montagem, posição axial do cubo estabelecida durante o processo de aperto dos parafusos e outros.

Torque:

Onde Tmáx. é o torque de pico, selecione T > Tmáx., sendo T= Torque transmissível do anel **MMP**

$$T_{máx.} = (9550 * P[kW] / rpm) * F_{pico} [Nm]$$

$$T_{\text{máx.}} = (7162 * P[CV] / rpm) * F_{pico} [Nm]$$

Cargas combinadas:

Quando as cargas abaixo são aplicadas:

Tmáx.= Torque de pico B= Momento fletor de pico F= Força axial de pico

O torque resultante é calculado conforme a fórmula abaixo:

$$T_R =$$

Onde d= diâmetro do eixo

O anel de fixação selecionado tem que atender a ambos requisitos:

$$T > T_R$$

Mb > B, onde Mb= momento fletor Mb depende de cada aplicação.

Arranjo com vários anéis de fixação montados em série:

Em aplicações onde dois ou mais anéis são instalados em série, a capacidade de torque total $\,$ Mt $_{tot}$ não é uma função linear do número de unidades n. Ela é calculada conforme baixo:

$$T_{tot} = n * T * f_{RS}$$

Onde f _{RS}= fator redução, conforme tabela 1

Tabela 1

ANEL MMP	Quantidade de anéis					
	2	3	4			
7012 - 7013 -130	0,8	0,75				
1012	0,85					
7015.1	0,8	0,75				
8006	0,77	0,62	0,5			

Verificação do eixo e cubo:

Os anéis de fixação exercem uma alta pressão de contato no eixo (\mathbf{p}) e no cubo (\mathbf{p}') . O tamanho e o material do eixo e cubo podem ser selecionados no pedido para resistir a esforços gerados pelo anel de fixação e pelas cargas aplicadas.

O critério a seguir é válido se considerarmos apenas a pressão de contato exercida pelo anel de fixação.

No caso de eixos maciços, o limite de escoamento do material deve ser maior que a pressão de contato \mathbf{p} . No caso de eixo oco, a resistência deve ser calculada considerando-se a conformação da rugosidade do eixo, pela pressão externa \mathbf{p} .

A verificação do cubo é baseada na tensão máxima tangencial, aplicada no furo do cubo. O diâmetro externo mínimo do cubo $D_{_{\rm N}}$ é calculado através da fórmula: $D_{_{\rm N}}$ =

$$D . \sqrt{\frac{Rp_{0,2} + (p'.C)}{Rp_{0,2} - (p'.C)}}$$

Onde:

D= Diâmetro externo do anel de fixação

Rp0,2= Limite de escoamento do material do cubo

C= Fator de redução de tensão (veja fig. 1)

Tabela 2

abela 2		EQUIVA	ALÊNCIA DE MATERIAL EN	I FUNÇÃO DO LIMI	TE DE ESCOAMENT	О					
Limite de escoamento do material do cubo Rp0,2 [N/mm²]											
150	180	200	220	250	270	300	350	400			
Material											
	GG-26	GG-30	GS-45	GS-52	C35	GS-60	GS-62	GS-70			
GG-22	GS-38	V4A-S	St 35	GS-C25	St 50-2	St 60-2	St 70-2	25CrMo4			
ABNT FC22	V2A-S	GTS-35	St 37-3	GGG-40	X8CrTi17	C10	St 52	SAE 4130			
	V2A-E	ABNT FC30	V4A-E	St 45	ALCUNIC	GTS-45	ABNT6656/LNE 50	ABNT 4130			
	ABNT FC26		ASTM A-570Gr.36	SAE 1020	SAE 1035	SAE 1045					
			ABNT6656-LNE 26	ASTM A-36	ABNT 1035	ABNT 1045					
				ABNT 1020							

Fator C - Forma de cubo:

O fator C deve ser selecionado em função do tipo de aplicação:

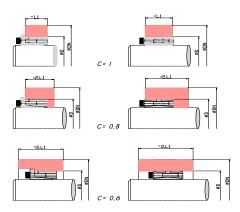


Fig. 1

IMPORTANTE:

Se o cubo possui uma configuração diferente, considere a forma mais similar ou a pior condição.

Anéis auto centrantes e não-centrantes:

Os anéis autocentrantes possibilitam uma excelente centragem de fixação. Oferecem concentricidade e perpendicularidade na faixa de 0,02mm a 0,05mm. As características de autocentragem dependem da largura e disposição dos furos, processo de fabricação e uma adequada montagem.

Se o anel de fixação não é autocentrante (MMP 7012), a pré-centragem do cubo é necessária para se obter uma correta fixação. A falta da área de centragem, sem o devido controle do momento fletor máximo, poderá comprometer o anel MMP e provocar sérios acidentes.

Material:

Os anéis de fixação MMP são produzidos de aço carbono tratados termicamente. Sob encomenda podemos fornecer anéis MMP em diferentes tipos de aço inoxidável (redução de desempenho de aproximadamente 70%), bem como com diferentes tratamentos superficiais.

Lubrificação:

Os anéis de fixação MMP são lubrificados com óleo mineral comum (leve filme). Em aplicações em aço inox destinadas à indústria alimentícia, pode-se empregar um óleo qualidade H1, conforme classificação da FDA-EUA. O eixo e cubo devem ser oleados. Nunca utilize lubrificantes a base de bissulfeto de molibdênio nos anéis de fixação. Este tipo de lubrificante somente poderá ser utilizado na montagem das flanges de fixação.

Temperatura:

Os anéis de fixação MMP operam sem restrições em temperaturas na faixa de -20°C a +150°C. Não há perda de perfomance quando as alterações de temperatura ocorrem por igual no eixo e no cubo. Diferentes materiais podem ser empregados para aplicações fora da faixa acima mencionada.

Anéis e Flanges Especiais:

Para toda a linha de produtos é possível executarmos peças com dimensões diferentes do padrão de catálogo ou com dimensional em polegadas. Outros tipos de materiais também podem ser fornecidos. As peças especiais estão sujeitas a consulta e conforme o modelo, podem estar sujeitas a lotes de fabricação.

MMP 7014

T= Torque máximo transmissível pelo anel

Ta= Torque de aperto dos parafusos

Fax= Força axial transmissível

p= Pressão de contato entre anel e eixop'= Pressão de contato entre anel e cubo

L, I e L₁= Dimensões com o anel desmontado

Tolerâncias= Eixo - h8 / Cubo - H8 Rugosidade do eixo e cubo= R_t >= 16microns

d x D	L	ı	L1	Т	Fax	р	p´	Qtde.	Parafuso	DIN 9	12 - 12.9	Та	Peso
mm	mm	mm	mm	Nm	kN	N/mm²	N/mm²		diâmetro	Х	comprimento	Nm	~
70 x 120	62	56	74	6850	197	201	117	8	M 12	Х	55	145	3,3
80 x 130	62	56	74	11650	291	263	162	12	M 12	х	55	145	3,7
90 x 140	62	56	74	13000	290	234	150	12	M 12	Х	55	145	4
100 x 160	80	74	94	19700	389	213	133	12	M 14	Х	70	230	7,2
110 x 170	80	74	94	26600	483	242	157	14	M 14	Х	70	230	7,7
120 x 180	80	74	94	28900	482	222	148	15	M 14	Х	70	230	8,3
130 x 190	80	74	94	31200	480	205	140	15	M 14	Х	70	230	8,8
140 x 200	80	74	94	40200	574	227	159	17	M 14	X	70	230	9,3
150 x 210	80	74	94	42900	572	212	152	18	M 14	Х	70	230	10
160 x 230	94	88	110	64000	800	227	158	17	M 16	X	80	355	14,9
170 x 240	94	88	110	67800	795	214	152	18	M 16	х	80	355	15,7
180 x 250	94	88	110	83000	923	235	170	20	M 16	Х	80	355	16,4
190 x 260	94	88	110	88000	921	223	163	21	M 16	Х	80	355	17,2
200 x 270	94	88	110	105000	1050	242	179	23	M 16	Х	80	355	18,8
220 x 300	116	110	134	123000	1120	189	138	21	M 18	Х	100	485	27,7
240 x 320	116	110	134	153000	1280	198	148	24	M 18	Х	100	485	29,8
260 x 340	116	110	134	186000	1430	205	157	26	M 18	X	100	485	32
280 x 370	136	130	156	230000	1650	192	145	24	M 20	X	120	690	46
300 x 390	136	130	156	245000	1650	179	138	24	M 20	х	120	690	49

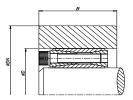


Fig. 20

Diâmetro externo do cubo DN requerido quando aplicando um anel MMP 7014, e variável conforme o limite de escoamento do material do cubo.

Larura B do cubo conforme tópico Fator C - Forma do cubo (Fig.1)

Equivalência de materiais, conforme tópico Verificação do Eixo e do Cubo

Limite de escoamento do material do cubo Rp0,2 [N/mm²]											
d x D	p'	200	220	250	270	300 DN	350	400	450	500	
mm	N/mm²					mm					
70 x 120	117	197	187	176	171	165	158	154	150	148	
80 x 130	162		287	247	231	215	199	189	182	177	
90 x 140	150	309	274	245	232	219	205	196	190	185	
100 x 160	133	311	285	261	250	238	225	216	210	206	
110 x 170	157	457	381	326	305	283	261	248	238	232	
120 x 180	148	419	366	323	305	287	267	255	246	240	
130 x 190	140	395	356	322	307	291	273	262	254	249	
140 x 200	159	552	455	388	362	336	309	293	281	273	
150 x 210	152	517	444	388	365	341	316	301	290	283	
160 x 230	158		541	455	423	391	359	339	326	316	
170 x 240	152	617	522	451	423	395	365	347	334	325	
180 x 250	170			552	501	455	410	384	367	354	
190 x 260	163		658	539	496	455	415	390	374	362	
200 x 270	179			662	586	521	462	429	407	392	
220 x 300	138	654	648	519	495	468	438	417	405	396	
240 x 320	148	803	685	595	560	522	483	461	445	432	
260 x 340	157		830	687	636	588	537	507	486	470	
280 x 370	145	930	792	688	648	603	559	533	515	500	
300 x 390	138	878	772	687	652	612	574	546	531	515	

INSTRUÇÕES DE MONTAGEM E DESMONTAGEM ANEL DE FIXAÇÃO MMP 7014

INSTALAÇÃO:

Uma vez que o torque é transmitido pela pressão de contato e atrito entre as superfícies de contato, a condição destas superfícies e o aperto adequado dos parafusos são importantes para o sucesso da montagem de um anel de fixação MMP.

- Verifique que todas as superfícies de contato, incluindo as roscas dos parafusos e os parafusos estejam limpos e levemente oleados (óleo mineral de uso comum).
 Nota: Nunca use Bissulfeto de Molibdênio, Molykote ou qualquer outro lubrificante similar!
- 2. Deslize o anel MMP através do eixo e introduza-o no furo do cubo, alinhando-o conforme requerido na montagem.
- 3. Aperte gradualmente os parafusos conforme seqüência apresentada na Fig. 23. A seqüência de aperto é apresentada abaixo:
- a) Aperte manualmente três ou quatro parafusos igualmente espaçados até que eles encostem-se na face do anel interno. Alinhe e ajuste a conexão.
- b) Aperte manualmente o restante dos parafusos até que estes também estejam encostados no anel interno.
- c) Utilize um torquímetro ajustado com 1/3 do torque indicado para aperto dos parafusos (Ma). Realize o aperto em cruz. Repita a operação com o torquímetro ajustado em 2/3 e finalmente com o torque Ma.
- d) Com o torque Ma regulado proceda ao aperto até que todos os parafusos não mais se movam com a ação do torquímetro. Não há um número ideal de apertos, que pode ser variável de anel para anel e demandar mais tempo nos tamanhos maiores.

Observação:

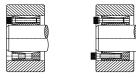
- O aperto com o torquímetro é mais bem realizado quando se realiza movimento de até 90° no parafuso.
- Para a verificação final de aperto é recomendado ajustar o torquímetro com aproximadamente 5% a mais de torque do que o recomendado em Ma, para compensar possíveis acomodações e ajustes na rugosidade das superfícies em contato.

Ferramentas de instalação:

- Torquímetro de estalo padrão, aferido. A sua seleção é baseada na faixa de torque de aperto (Ma), indicada na Tabela II.
- Soquete hexagonal, para parafuso com sextavado interno. Definido conforme tamanho do parafuso.
- Em algumas montagens talvez seja necessário empregar outros acessórios, como: extensor, junta universal, etc. Portanto, recomendamos que no planejamento de montagem seja considerado um jogo completo de soguetes com acessórios.

• O uso de ferramentas de torque hidráulico pode ser empregado, principalmente quando envolverem a montagens de anéis de grandes dimensões.

Nota: Nunca use ferramentas de impacto!


Uma vez que o torque é transmitido pela pressão de contato e atrito entre as superfícies de contato, a condição destas superfícies e o aperto adequado dos parafusos são importantes para o sucesso da montagem de um anel de fixação MMP.

DESMONTAGEM:

Os anéis de fixação MMP 7014 poderão ser removidos conforme indicado abaixo:

- 1. Solte os parafusos gradualmente e em cruz. Não remova os parafusos totalmente do anel.
- 2. Remova os parafusos adjacentes às roscas de extração e introduza-os nestas roscas de forma que pressionem o anel externo. Com esta operação o anel poderá ser retirado.
- 3. O conjunto poderá ser ajustado ou novamente montado. Retire os parafusos extratores somente após remover o anel para fora do cubo.

Antes de reutilizar um anel MMP 7014, limpe-o e verifique se não há nenhum comprometimento nas superfícies de contato. Após desmontar o anel, verifique de montá-lo de forma que as roscas extratoras estejam dispostas nos pontos onde não há rosca na lateral traseira.

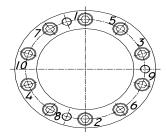


Fig. 21 Fig. 22 Fig. 23